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Influence Functions

• The influence function is a classic technique from robust statistics
that estimates the effect of deleting a single data example (or a
group of data examples) from a training dataset.

• More formally, influence functions approximate the optimal
parameters with a data point z = (x, t) removed with:

θ⋆
removed ≈ θ⋆ +

1

N
(∇2

θJ (θ⋆) + λI)−1∇θL(f (θ⋆, x), t),

where θ⋆ is the optimal parameters trained on the full dataset
and λ is a damping term to ensure invertibility.

• When the training objective is strongly convex (e.g., as in logistic
regression with L2 regularization), influence functions are
expected to align well with leave-one-out (LOO) or leave-k-out
retraining.

Influence Estimation in Neural Networks

• However, influence functions in neural networks often do not
accurately predict the effect of retraining the model without a
data point.

• Therefore, previous error analyses concluded that influence
estimations for neural networks are often “fragile” and
“erroneous”.

• In this work, we decompose several factors responsible for the
mismatch between influence functions and LOO retraining.

1. Warm-Start Gap

• Influence functions approximate the effect of removing a data
point z at a local neighbourhood of the optimum θ⋆.

• Hence, influence approximation has a more natural connection to
the retraining scheme that initializes the network at the current
optimum θ⋆ (warm-start retraining) than the scheme that
initializes the network randomly (cold-start retraining).

• For neural nets, warm-start optimum ̸= cold-start optimum.

2. Proximity Gap

• When a damping λ is used, influence functions can be seen as
approximating:

θ⋆
removed ≈ arg min

θ
J (θ)− 1

N
L(f (θ, x), t) + λ

2
∥θ − θ⋆∥2.

• In this case, influence functions approximate the warm-start
retraining scheme with a proximity term that penalizes the L2
distance between the new estimate and the optimal parameters.
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Pearson = 0.999
Spearman = 0.987

IF vs. LOO (LR)

Influence Loss difference

R
et

ra
in

lo
ss

di
ff

er
en

ce

Pearson = 0.032
Spearman = 0.0391

IF vs. LOO (MLP)
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Pearson = 0.974
Spearman = 0.916

IF vs. PBRF (MLP)

3. Non-Convergence Gap
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Non-Converged Parameters
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Warm-start Optimum

Influence Estimation

• While influence function derivation assumes the parameters to be
optimal, in neural network training, we often terminate the
optimization procedure before reaching the exact optimum.

• In such situations, much of the change in the parameters from
warm-start LOO retraining simply reflects the effect of training for
longer (a nuisance from the perspective of understanding influence).

• Influence functions computed on non-converged parameters θs

approximate a different object which we call the proximal Bregman
response function (PBRF):

θ⋆
removed ≈ arg min

θ

1

N

N∑
i=1

DL(i)(θ,θs, x(i))− 1

N
L(f (θ, x), t) + λ

2
∥θ − θs∥2,

where DL is the Bregman divergence that measures the discrepancy
between network outputs f (θ, x) and f (θs, x).

4. Linearization Error and 5. Solver Error

• Influence functions leverage second-order Taylor approximation. The
error resulting from this local approximation is what we term the
linearization error.

• As the precise computation of the inverse-Hessian vector product is
computationally infeasible, practitioners typically use truncated CG

or LiSSA. The error introduced by these efficient linear solvers is what
we call solver error.

Influence Mismatch Decomposition
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• Across various tasks, the first three sources dominate the
mismatch, indicating influence function estimators are answering
a different question from what is normally assumed (LOO).

• Small linearization and solver errors indicate that influence
functions accurately answer the modified question (PBRF).

• Reframing influence functions in this way means that the PBRF
can be regarded as a ground truth for evaluating influence
function approximation.

Influence Function vs. PBRF

• Test losses predicted by influence functions have high (Pearson
and Spearman’s) correlations with the estimates given by PBRF.

• As previous error analyses suggest, influence functions do not
capture the behaviour of LOO retraining.

Model Cold-Start Warm-Start PBRF

P S P S P S

MLP -0.55 0.01 0.22 0.35 0.98 0.99
LeNet -0.19 0.12 0.32 0.25 0.93 0.52
AlexNet -0.16 -0.08 0.51 0.58 0.99 0.99
VGG13 0.45 -0.07 -0.28 -0.51 0.98 0.77

ResNet-20 0.09 -0.06 0.02 0.09 0.81 0.76

Factors in Influence Mismatch
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• We can further analyze how the contribution of each component
changes in response to changes in network width and depth,
training time, weight decay, damping, and the percentage of data
removed.


