
Training Data Attribution (TDA)
with
Influence Functions

Background: Influence Functions
▸ Influence functions are a classical idea from robust statistics (Hampel, 1974), which was

introduced to deep learning by Koh and Liang (2017).

▸ Assume we have a training dataset . E.g., for supervised learning, .
We fit the parameters using empirical risk minimization:

▸ We want to understand the effect of removing (or adding) a training example . We
parameterize the training set by ’s weight , and see how the optimal solution varies
(i.e., the response function):

Background: Influence Functions

▸ The influence of on is defined as the
first-order Taylor approximation of the
response function.

▸ Under certain regularity conditions, this can
be computed using the Implicit Function
Theorem:

▸ Thus, we can approximate the change in
parameters as:

Background: Influence Functions

▸ Using the Chain Rule for Derivatives, we can approximate the change in the
measurable quantity of query data point by perturbing a weight of a training
data point :

▸ The measurement is chosen based on metrics relevant to the analysis, such as
loss, margin, or log-probability.
○ When the measurement is defined as the loss, a higher absolute score

signifies a more substantial change in the query loss when the data point is
excluded from (or added to) the training dataset.

Examples of Highly Influential Data Points

CIFAR-10

FashionMNIST

Influence Functions: Scalability Challenges
▸ Given a query data point , we aim to identify influential training data points. The

influence function computation process can be broken down into two stages:

Influence Functions: Scalability Challenges
▸ Given a query data point , we aim to identify influential training data points. The

influence function computation process can be broken down into two stages:

1. IHVP computation

Influence Functions: Scalability Challenges
▸ Given a query data point , we aim to identify influential training data points. The

influence function computation process can be broken down into two stages:

1. IHVP computation

2. Dot product computations with
all candidate training data points

Influence Functions: Scalability Challenges

Query Image

1. IHVP computation

Influence Functions: Scalability Challenges

Dot

,

IHVP Train Gradient 1

0.1

Training Image

2. Dot product computations with
all candidate training data points

Influence Functions: Scalability Challenges

Dot

,

IHVP Train Gradient 2

-0.4

Training Image

2. Dot product computations with
all candidate training data points

Influence Functions: Scalability Challenges

▸ Challenge 1: IHVP computation
○ The Hessian H has dimensions equal to the square of the model's parameter

count, making explicit computation infeasible for large models.
○ In our past works, we have employed efficient IHVP approximation

techniques, such as LiSSA and EKFAC.
■ Using EKFAC, we successfully scaled influence functions with to LLMs

with over 52 billion parameters.

1. IHVP computation

2. Dot product computations with
all candidate training data points

Influence Functions: Scalability Challenges

▸ Challenge 2: Dot product computations
○ This stage requires computing the per-sample gradient for all candidate

training data points.
○ For LLM pretraining, this process is at least as expensive as the cost of

pretraining the model itself (1 epoch training).
○ Furthermore, this needs to be repeated for each query data point .

1. IHVP computation

2. Dot product computations with
all candidate training data points

Influence Functions: Conceptual Challenges

▸ The classical formulation of influence functions just described does not quite apply
to modern neural networks.
○ Assumes H is invertible, while neural network training is often underspecified.
○ Assumes that we have found the optimal solution and TDA is performed on

this optimal solution.
○ In practice, the gradients and Hessian computed using the final parameters

from a single training run (rather than the optimal solution).

▸ Moreover, the classic formulation of influence functions cannot incorporate the
details of the training process:
○ Location of a data point of interest appeared during training.
○ Implicit bias of optimizers (e.g., the use of SGD vs. Adam).
○ Learning rate schedules.

What is Your Data Worth to GPT?
LLM-Scale Data Valuation with
Influence Functions

Sang Keun Choe, Hwijeen Ahn, Juhan Bae , Kewen Zhao, Minsoo Kang,
Youngseog Chung, Adithya Pratapa, Willie Neiswanger, Emma Strubell,
Teruko Mitamura, Jeff Schneider, Eduard Hovy, Roger Grosse, Eric Xing

Motivation: Gradient Caching
▸ Recall: Training gradients need to be recomputed for each new query.

1. IHVP computation

2. Dot product computations with
all candidate training data points

Motivation: Gradient Caching
▸ Recall: Training gradients need to be recomputed for each new query.

▸ Idea: Can we save all individual training gradients in storage to avoid the recomputation
of training gradients for new query?
○ Once the training gradients are all saved on storage, we can use approximate

nearest neighbor search to compute influence scores for all training data points.

1. IHVP computation

2. Dot product computations with
all candidate training data points

+ Save the training gradient to
reuse it for new query

Motivation: Gradient Caching
▸ Problem: High memory costs due to an (extremely) high-dimensional nature of

gradients

▸ For 8B model (e.g., Llama3-8B) with 100,000 training data points, we need 3.2 PB (or
3,200 TB) of storage to save all training gradients.
○ Loading a 32 gigabyte (GB) vector for each training data point incurs a significant

disk I/O overhead.

dim(grad) = # params

Gradient Projection
▸ Idea: One strategy to address the scalability challenge is to project the gradients onto a

low-dimensional space and compute influence scores within the subspace spanned by
the projection matrix.

▸ Advantages:
○ Low-rank projection enables writing projected gradients for all training data to disk

once and simply reading them as new query data point arrives (without costly
recomputations).
■ Llama3-8B & 100,000 training data: 3.2PB → 4GB (when k = 10,000)

○ Reduced the Hessian inversion cost.
○ (Future) Reduced influence analysis costs.

Projection matrix of size k x m
(where k << m)

Gradient Projection
▸ Problem: The above benefits come at the cost of an additional gradient projection

○ Time complexity for computing the projected per-sample gradient:
■ b: Batch size
■ k: Projection dimension
■ m: Model dimension

○ Space complexity for the projection matrix:
■ E.g., the matrix size for an 8B model and the 4k projection dimension: 128TB!

Gradient Projection
▸ Problem: The above benefits come at the cost of an additional gradient projection

○ Time complexity for computing the projected per-sample gradient:
■ b: Batch size
■ k: Projection dimension
■ m: Model dimension

○ Space complexity for the projection matrix:
■ E.g., the matrix size for an 8B model and the 4k projection dimension: 128TB!

▸ Summary so far:

○ Data influence analysis can be seen as vector similarity analysis in gradient space.
○ Gradient is too high-dimensional → projection is necessary
○ A projection cost is too high → ?

Efficient Gradient Projection (LoGra)
▸ Observation: Gradient DW in backpropagation is Kronecker-product (or 2D) structured:

Efficient Gradient Projection (LoGra)
▸ Observation: Gradient DW in backpropagation is Kronecker-product (or 2D) structured:

○ Impose a Kronecker-product structure on the projection matrix P

○ Time & space complexity: (1GB for the above example)

○ Compute projected gradients without materializing full gradients

○ Easy and efficient implementation with small add-on layers

�� ��

Efficient Gradient Projection (LoGra)
▸ Vector database consists of two phases

○ Vector logging/caching
○ Vector similarity search

▸ Efficiency comparison with Llama3-8B-Instruct and the 1B-token dataset

○ Baseline: EKFAC

x6,500 x5

Software: LogIX
▸ Gradients are by-products of training

▸ Given arbitrary training codes,
○ Intercept gradients
○ Compute statistics (e.g., covariance)
○ Write gradients to disk

▸ Similar to Weights & Biases

▸ Compatible with various frameworks, tools,
features in the LLM ecosystem!
○ Integration with HF Transformers and

PyTorch Lightning

Overall TDA System Architecture

Application: Data Curation
▸ Brittleness test

○ Given a specific test data point,
○ Identify top-k influential training data
○ Retrain the model without the identified top-k influential data
○ Measure how much the output for this test data point changes

Application: Data Attribution

Application: Data Attribution

Complete Quantitative Experiments

Training Data Attribution via
Approximate Unrolled
Differentiation

Juhan Bae, Wu Lin, Jonathan Lorraine, Roger Grosse

Recall: Influence Functions
▸ Influence functions estimate the optimal solution sensitivity to downweighting a

training data point.

▸ We discussed some conceptual issues of influence functions when applied to modern
neural networks.
○ Assumes that we have found the optimal solution and TDA is performed on this

optimal solution.
○ They cannot incorporate the details of the training process (e.g., the location of a

data point appeared during training).

▸ These conceptual issues limit the applicability of influence functions. For example, we
cannot perform TDA on:
○ Models not sufficiently trained near convergence.
○ Models trained with distinct stages with different objectives or datasets such as in

continual learning and foundation models.

Unrolled Differentiation
▸ By contrast, unrolling-based TDA can incorporate details of the training process.

○ It approximates the impact of downweighting a data point’s gradient update on
the final model parameters by backpropagating through the preceding
optimization steps

▸ Consider optimizing the model parameters using SGD with a fixed batch size B:

▸ We aim to understand the effect of removing a training data point. To this end, we
parameterize the update rule as:

Unrolled Differentiation
▸ Similarly to other gradient-based TDA techniques, such as influence functions, we

approximate the change in parameters with its first-order Taylor approximation.

▸ The total derivative at iteration k can be expressed as , where:

Unrolled Differentiation

▸ In contrast to influence functions,
unrolling does not assume uniqueness or
convergence to the optimal solution.

▸ Furthermore, it can account for details of
the training process such as learning rate
schedules, implicit bias of optimizers, or
a data point’s position during training.

Unrolled Differentiation
▸ Since the effect of removing a data point on any single training trajectory can be noisy,

we consider the expectation over training trajectories, where the selection of training
examples in each batch are treated as random variable:

▸ Problem:
○ For each trajectory, the total derivative is evaluated using reverse accumulation

(backpropagation) on the computation graph. However, this is prohibitively
expensive, as it requires storing all intermediate variables for the backward pass.

○ Many Monte Carlo samples may be required to achieve accurate estimates.

SOURCE
▸ To derive a more efficient algorithm, we partition the training procedures into L

segments and approximate unrolling with statistical summaries thereof.

▸ Key Approximations:
○ We approximate the Hessian and gradients distribution as stationary within each

segment (e.g., the Hessians within a segment share a common mean).
○ We approximate the Hessians and gradients in different time steps as statistically

independent.

SOURCE
We can rewrite the previous expression with the segment notation:

Note that is the Jacobian associated with each segment.

1 2

SOURCE - Part 1
▸ The first term can be approximated as follows:

▸ The above expression can be seen as applying the function
to each eigenvalue of the Hessian.

▸ Intuition:
○ The value is close to zero in high-curvature directions, so training “forgets” the

component of the parameters which lie in these directions.
○ Information is retained throughout the segment for low-curvature directions.

1

SOURCE - Part 2
▸ The second term can be approximated as follows:

▸ The above expression can also be seen as applying the function
to each eigenvalue of the Hessian.

2

SOURCE - Part 2

▸ Intuition: In high-curvature directions, this term approaches , whereas in low-curvature
directions, it approaches .

▸ Interestingly, this qualitative behavior can be captured with the function ,
where . This resembles influence function computations with a specific damping
term:

SOURCE - Full Procedure

SOURCE - Full Procedure

SOURCE - Full Procedure

Putting it all together, we derived a closed-form term to approximate the expected total
derivative:

SOURCE - Implementation Details
▸ Given C model checkpoints saved during training,

○ SOURCE organize them into L segments. The segments may represent explicit
stages of training or account for the change in Hessian and gradient
throughout training.

○ Within each segment, SOURCE estimates the stationary Hessian and gradient
by averaging them.

▸ We use EK-FAC parameterization to approximate the Hessian.
○ The EK-FAC has an explicit eigendecomposition, which enables efficient

computation of the terms.

▸ Computation Costs: SOURCE requires computing the EK-FAC factors and training
gradients for each model checkpoint when performing TDA on all segments.
○ Compared to EK-FAC IF, SOURCE is C times more computationally expensive.

(We use C = 6 in our experiments.)
○ We do not need to save all intermediate variables for unrolled differentiation!

Linear Datamodeling Score (LDS)

Brittleness Test

